Search In this Thesis
   Search In this Thesis  
العنوان
Construction of biosensor for the detection of some cyanotoxins in water /
الناشر
أمير محمد محمود البسوني،
المؤلف
البسيوني، أمير محمد محمود.
الموضوع
الكيمياء التحليلة.
تاريخ النشر
2014.
عدد الصفحات
99 ص. :
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
الكيمياء البيئية
مكان الإجازة
جامعة دمياط - كلية العلوم - الكيمياء
الفهرس
Only 14 pages are availabe for public view

from 32

from 32

Abstract

1. Turner, A., Biosensors: Fundamentals and Applications. 1989.
2. IsmailHakk, B. and M. Mehmet, Amperometric Biosensors in Food
Processing, Safety, and Quality Control, in Biosensors in Food
Processing, Safety, and Quality Control. 2010, CRC Press. p. 1-51.
3. Nora Savage, M.D., Jeremiah Duncan, Anita Street, and Richard
Sustich, Nanotechnology Applications for Clean Water. 2009.
4. Velasco-Garcia, M.N. and T. Mottram, Biosensor Technology
addressing Agricultural Problems. Biosystems Engineering, 2003.
84(1): p. 1-12.
5. Antuña-Jiménez, D., et al., Chapter 1 - Molecularly Imprinted
Electrochemical Sensors: Past, Present, and Future, in Molecularly
Imprinted Sensors. 2012, Elsevier: Amsterdam. p. 1-34.
6. Yahagi, T., et al., Mutagenicity of carcinogenic azo dyes and their
derivatives. Cancer Letters, 1975. 1: p. 91-96.
7. Rehorek, A., et al., Monitoring of azo dye degradation processes in a
bioreactor by on-line high-performance liquid chromatography.
Journal of chromatography A, 2002. 949(1–2): p. 263-268.
8. Bilgi, S. and C. Demir, Identification of photooxidation degradation
products of C.I. Reactive Orange 16 dye by gas chromatography–
mass spectrometry. Dyes and Pigments, 2005. 66(1): p. 69-76.
9. Bersier, P.M. and J. Bersier, Polarography and voltammetry of dyes
and intermediates. TrAC Trends in Analytical Chemistry, 1986. 5(4):
p. 97-102.
10. ªahin, S., C. Demir, and e. Güçer, Simultaneous UV–vis
spectrophotometric determination of disperse dyes in textile
wastewater by partial least squares and principal component
regression. Dyes and Pigments, 2007. 73(3): p. 368-376.
91
11. Pérez-Urquiza, M., R. Ferrer, and J.L. Beltrán, Determination of
sulfonated azo dyes in river water samples by capillary zone
electrophoresis. Journal of chromatography A, 2000. 883(1–2): p.
277-283.
12. Suzuki, T., et al., Correlation of aerobic biodegradability of
sulfonated azo dyes with the chemical structure. Chemosphere, 2001.
45(1): p. 1-9.
13. Cioni, F., et al., Development of a solid phase microextraction method
for detection of the use of banned azo dyes in coloured textiles and
leather. Rapid Communications in Mass Spectrometry, 1999. 13(18):
p. 1833-1837.
14. Muruganandham, M. and M. Swaminathan, Photochemical oxidation
of reactive azo dye with UV–H< sub> 2</sub> O< sub> 2</sub>
process. Dyes and Pigments, 2004. 62(3): p. 269-275.
15. Yang, Y. and L. Xu, Reusing hydrolyzed reactive dyebath for nylon
and wool dyeing. American dyestuff reporter, 1996. 85(3): p. 27-34.
16. Chen, M., et al., Purification and identification of several sulphonated
azo dyes using reversed-phase preparative high-performance liquid
chromatography. Journal of chromatography A, 1998. 825(1): p. 37-
44.
17. Borrós, S., et al., The use of capillary electrophoresis to study the
formation of carcinogenic aryl amines in azo dyes. Dyes and
Pigments, 1999. 43(3): p. 189-196.
18. Stylidi, M., D.I. Kondarides, and X.E. Verykios, Pathways of solar
light-induced photocatalytic degradation of azo dyes in aqueous TiO<
sub> 2</sub> suspensions. Applied Catalysis B: Environmental,
2003. 40(4): p. 271-286.
92
19. Saquib, M. and M. Muneer, TiO2-mediated photocatalytic
degradation of a triphenylmethane dye (gentian violet), in aqueous
suspensions. Dyes and Pigments, 2003. 56(1): p. 37-49.
20. López Cisneros, R., A. Gutarra Espinoza, and M.I. Litter,
Photodegradation of an azo dye of the textile industry. Chemosphere,
2002. 48(4): p. 393-399.
21. Šafaøýìk, I. and M. Šafaøýìková, Detection of low concentrations of
malachite green and crystal violet in water. Water Research, 2002.
36(1): p. 196-200.
22. Plum, A. and A. Rehorek, Strategies for continuous on-line high
performance liquid chromatography coupled with diode array
detection and electrospray tandem mass spectrometry for process
monitoring of sulphonated azo dyes and their intermediates in
anaerobic–aerobic bioreactors. Journal of chromatography A, 2005.
1084(1–2): p. 119-133.
23. Plum, A., G. Braun, and A. Rehorek, Process monitoring of anaerobic
azo dye degradation by high-performance liquid chromatography–
diode array detection continuously coupled to membrane filtration
sampling modules. Journal of chromatography A, 2003. 987(1–2): p.
395-402.
24. Calbiani, F., et al., Development and in-house validation of a liquid
chromatography–electrospray–tandem mass spectrometry method for
the simultaneous determination of Sudan I, Sudan II, Sudan III and
Sudan IV in hot chilli products. Journal of chromatography A, 2004.
1042(1–2): p. 123-130.
25. Holčapek, M., P. Jandera, and P. Zderadička, High performance liquid
chromatography–mass spectrometric analysis of sulphonated dyes
93
and intermediates. Journal of chromatography A, 2001. 926(1): p.
175-186.
26. Pérez-Urquiza, M. and J.L. Beltrán, Determination of the dissociation
constants of sulfonated azo dyes by capillary zone electrophoresis and
spectrophotometry methods. Journal of chromatography A, 2001.
917(1–2): p. 331-336.
27. Riu, J., et al., Determination of sulphonated azo dyes in water and
wastewater. TrAC Trends in Analytical Chemistry, 1997. 16(7): p.
405-419.
28. Netpradit, S., P. Thiravetyan, and S. Towprayoon, Adsorption of three
azo reactive dyes by metal hydroxide sludge: effect of temperature,
pH, and electrolytes. Journal of Colloid and Interface Science, 2004.
270(2): p. 255-261.
29. Mottaleb, M.A. and D. Littlejohn, Application of an HPLC-FTIR
modified thermospray interface for analysis of dye samples.
Analytical Sciences, 2001. 17(3): p. 429-434.
30. Robinson, T., et al., Remediation of dyes in textile effluent: a critical
review on current treatment technologies with a proposed alternative.
Bioresource Technology, 2001. 77(3): p. 247-255.
31. O’Neill, C., et al., Colour in textile effluents–sources, measurement,
discharge consents and simulation: a review. Journal of Chemical
Technology and Biotechnology, 1999. 74(11): p. 1009-1018.
32. Schönsee, I., J. Riu, and D. Barceló, Quim. Anal., 1997. 16: p. 243–
249.
33. Vanìrková, D., P. Jandera, and J. Hrabica, Behaviour of sulphonated
azodyes in ion-pairing reversed-phase high-performance liquid
94
chromatography. Journal of chromatography A, 2007. 1143(1–2): p.
112-120.
34. Nevado, J.J.B., C.G. Cabanillas, and A.M.C. Salcedo, Simultaneous
spectrophotometric determination of three food dyes by using the first
derivative of ratio spectra. Talanta, 1995. 42(12): p. 2043-2051.
35. Reig, F.B. and P.C. Falcó, H-point standard additions method. Part 1.
Fundamentals and application to analytical spectroscopy. Analyst,
1988. 113(7): p. 1011-1016.
36. Escandar, G.M., et al., A review of multivariate calibration methods
applied to biomedical analysis. Microchemical Journal, 2006. 82(1):
p. 29-42.
37. Geladi, P., Chemometrics in spectroscopy. Part 1. Classical
chemometrics. Spectrochimica Acta Part B: Atomic Spectroscopy,
2003. 58(5): p. 767-782.
38. Hemmateenejad, B., M.A. Safarpour, and A. Mohammad
Mehranpour, Net analyte signal–artificial neural network (NAS–ANN)
model for efficient nonlinear multivariate calibration. Analytica
Chimica Acta, 2005. 535(1–2): p. 275-285.
39. Korn, M.d.G.A., et al., Separation and preconcentration procedures
for the determination of lead using spectrometric techniques: A
review. Talanta, 2006. 69(1): p. 16-24.
40. El-Barghouthi, M.I., et al., Adsorption Behavior of Anionic Reactive
Dyes on H-type Activated Carbon: Competitive Adsorption and
Desorption Studies. Separation Science and Technology, 2007.
42(10): p. 2195-2220.
95
41. de Castro Dantas, T.N., et al., Use of microemulsions for removal of
color and dyes from textile wastewater. Journal of Chemical
Technology and Biotechnology, 2004. 79(6): p. 645-650.
42. López-Grimau, V., et al., Electrochemical decolourisation of cotton
dye baths for reuse purposes: a way to reduce salinity of the textile
wastewater. Desalination and Water Treatment, 2013. 51(7-9): p.
1527-1532.
43. Rodrigues, C.S., L.M. Madeira, and R.A. Boaventura, Optimization
and Economic Analysis of Textile Wastewater Treatment by Photo-
Fenton Process under Artificial and Simulated Solar Radiation.
Industrial & Engineering Chemistry Research, 2013. 52(37): p.
13313-13324.
44. Bard, A.J., New challenges in electrochemistry and electroanalysis.
Pure Appl. Chem, 1992. 64: p. 185-192.
45. Zhu, Q.-Z., et al., Determination of nucleic acids using phosphin 3R
as a fluorescence probe. Anal. Chim. Acta.,, 1999. 394(2): p. 177-
184.
46. Kaifer, A. and M. Gomez-Kaifer, Supramolecular Electrochemistry
1999. 1999, Wiley-VCH: Weinheim.
47. Gupta, N. and H. Linschitz, Hydrogen-bonding and protonation
effects in electrochemistry of quinones in aprotic solvents. J. Am.
Chem. Soc., 1997. 119(27): p. 6384-6391.
48. Heffner, J.E., et al., Using cyclic voltammetry and molecular
modeling to determine substituent effects in the one-electron reduction
of benzoquinones. J. Chem. Educ., 1998. 75(3): p. 365.
49. Gomez .M, F.J.G.a.I.G., Electroanalysis, 2003. 15: p. 635
96
50. Allen, J.B. and R.F. Larry, Electrochemical methods: fundamentals
and applications. Department of Chemistry and Biochemistry
University of Texas at Austin, John Wiley & Sons, Inc, 2000.
51. Otles, S., Handbook of food analysis instruments. 2008: CRC Press.
52. Bard, A.J. and L.R. Faulkner, Electrochemical methods: fundamentals
and applications. Vol. 2. 1980: Wiley New York.
53. Palanti, S., G. Marrazza, and M. Mascini, Electrochemical DNA
probes. Analytical Letters, 1996. 29(13): p. 2309-2331.
54. Carter, M.T., M. Rodriguez, and A.J. Bard, Voltammetric studies of
the interaction of metal chelates with DNA. 2. Tris-chelated
complexes of cobalt (III) and iron (II) with 1, 10-phenanthroline and
2, 2’-bipyridine. Journal of the American Chemical Society, 1989.
111(24): p. 8901-8911.
55. Jiao, K., et al., Studies on the recognition interaction of rhodamine B
and DNA by voltammetry. Chemical Research in Chinese Universities,
2005. 21(2): p. 145-148.
56. Wang, Q.-X., et al., Spectroscopic, viscositic and electrochemical
studies of DNA interaction with a novel mixed-ligand complex of
nickel (II) that incorporates 1-methylimidazole and thiocyanate
groups. Journal of Biochemical and Biophysical Methods, 2007.
70(3): p. 427-433.
57. Brett, A.M.O., S.H. Serrano, and A.J.P. Piedade, Electrochemistry of
DNA, in Comprehensive Chemical Kinetics. 1999, Elsevier:
Amsterdam. p. 91-119.
58. Brett, A.M.O., et al., Electrochemical determination of carboplatin in
serum using a DNA ‐ modified glassy carbon electrode.
Electroanalysis, 1996. 8(11): p. 992-995.
97
59. Benesi, H.A. and J.H. Hildebrand, A spectrophotometric investigation
of the interaction of iodine with aromatic hydrocarbons. Journal of
the American Chemical Society, 1949. 71(8): p. 2703-2707.
60. Cao, Y. and X.-w. He, Studies of interaction between safranine T and
double helix DNA by spectral methods. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 1998. 54(6): p. 883-892.
61. Chuan, D., W. Yu-xia, and W. Yan-li, Study on the interaction
between methylene violet and calf thymus DNA by molecular
spectroscopy. Journal of Photochemistry and Photobiology A:
Chemistry, 2005. 174(1): p. 15-22.
62. Modukuru, N.K., et al., Contributions of a long side chain to the
binding affinity of an anthracene derivative to DNA. The Journal of
Physical Chemistry B, 2005. 109(23): p. 11810-11818.
63. Long, E.C. and J.K. Barton, On demonstrating DNA intercalation.
Accounts of Chemical Research, 1990. 23(9): p. 271-273.
64. Cantor, C.R. and P.R. Schimmel, Biophysical Chemistry. 1980, WH
Freeman: San Francisco, CA.
65. Pyle, A., et al., Mixed-ligand complexes of ruthenium (II): factors
governing binding to DNA. Journal of the American Chemical
Society, 1989. 111(8): p. 3051-3058.
66. Wolfe, A., G.H. Shimer Jr, and T. Meehan, Polycyclic aromatic
hydrocarbons physically intercalate into duplex regions of denatured
DNA. Biochemistry, 1987. 26(20): p. 6392-6396.
67. Carter, M.T., M. Rodriguez, and A.J. Bard, Voltammetric studies of
the interaction of metal chelates with DNA. 2. Tris-chelated
complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and
98
2,2′-bipyridine. Journal of the American Chemical Society, 1989.
111(24): p. 8901-8911.
68. Takenaka, S., T. Ihara, and M. Takagi, Bis-9-acridinyl derivative
containing a viologen linker chain: Electrochemically active
intercalator for reversible labelling of DNA. Journal of the Chemical
Society - Series Chemical Communications, 1990(21): p. 1485-1487.
69. Dang, X.J., et al., Inclusion of the parent molecules of some drugs
with β-cyclodextrin studied by electrochemical and spectrometric
methods. Journal of Electroanalytical Chemistry, 1998. 448(1): p. 61-
67.
70. Bard, A. and L. Faulkner, Electrochemical methods: principles and
applications. Electrochemical Methods: Principles and Applications,
2001.
71. Meggers, E., M.E. Michel-Beyerle, and B. Giese, Sequence dependent
long range hole transport in DNA. Journal of the American Chemical
Society, 1998. 120(49): p. 12950-12955.
72. Delaney, S. and J.K. Barton, Long-range DNA charge transport. The
Journal of organic chemistry, 2003. 68(17): p. 6475-6483.
73. Hall, D.B. and J.K. Barton, Sensitivity of DNA-mediated electron
transfer to the intervening π-stack: a probe for the integrity of the
DNA base stack. Journal of the American Chemical Society, 1997.
119(21): p. 5045-5046.
74. Ahmadi, F., et al., The experimental and theoretical QM/MM study of
interaction of chloridazon herbicide with ds-DNA. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 79(5):
p. 1004-1012.