

Mansoura University
Faculty of Engineering
Math. \& Eng. Physics Dept.

Advanced Numerical Analysis
September 8, 2013
$2^{\text {nd }}$ year Postgraduate Students
Time allowed: 3 Hours
Prof. Dr. Magdi S. El-Azab Dr. Waleed Raslan

Answer the following problems (Full mark 100 pts)

1. (a) [5 pts] Give the definition of the fractional derivative operator (of Caputo sense) $D^{\alpha} f(t), t>0, \quad \alpha \in(0,1)$, discuss its existence and then discuss the validity of the following relations

- $D^{\alpha} D^{\beta} f(t)=D^{\alpha+\beta} f(t), \quad \alpha+\beta \in(1,2)$
- $D^{\alpha} I^{\beta} f(t)=I^{\beta-\alpha} f(t), \quad \beta>\alpha$
- $D^{\alpha} I^{\alpha} f(t)=I^{\alpha} D^{\alpha} f(t)=f(t)$
(b) [5 pts] Give the definition of the Riemann-Liouville fractional derivative operator * $D_{\theta}^{\alpha} f(t), t>0$, discus its existence and prove that for any constant $k \neq 0$, then $* D^{\alpha} k \neq 0$, while $D^{\alpha} k=0$.
(c) [5 pts] Using two methods, find the solution of the fractional initial value problem $D^{\alpha} x(t)=\mu x(t), \quad t>0, \quad \alpha \in(0,1), \quad x(0)=x_{0}$, then prove that this solution satisfies the problem. Also, study the continuation of the solution $(\alpha \rightarrow 1)$.

2. Given the problem $-\Delta u+5 u=f$ in $\Omega, u=0$ on $\partial \Omega$, where f is a smooth function.
(a) [5 pts] Define the space of solution.
(b), [5 pts] Write the weak formula corresponding to the given problem.
(c) [5 pts] State and prove Lax-Milgram theorem for this problem.
(d) [5 pts] Write the matrix form of the solution of the problem by Ritz method with the basis $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots, \varphi_{n}$.
3. [5 pts] State without proof:
(i) The discrete and continuous forms of Gronwall's inequality,
(ii) Schwarz and Young's inequalities.
4. Given the problem $u_{t}-4 u_{x x}=f$ in $Q_{T} \equiv(0,1) \times(0, T)$, where f is a smooth enough function and $Q_{T}=\Omega \times I, \Omega \equiv(0,1), \partial \Omega \equiv\{0,1\}, I \equiv(0, T)$. The problem is associated with the Dirichlit boundary condition

$$
u=0, \quad(x, t) \in \partial \Omega \times I,
$$

and the initial condition $u(x, 0)=\sin \pi x, \quad x \in \Omega$.
(a) [5 pts] What is the weak solution of this problem?
(b) [5 pts] Define Roth's solution and the corresponding step functions.
(c) [5 pts] Derive the a priori estimates of the approximate solution.
(d) $[5 \mathrm{pts}]$ Discuss the convergence and the error estimates of the approximate solution.
5. [10 pts] Apply Galerkin method to solve the boundary value problem

$$
-u^{\prime \prime}=\cos x, \quad u(0)=0, \quad u(1)=0
$$

with the basis

$$
\sin x, \frac{\sin 2 x}{2}, \frac{\sin 3 x}{3}, \frac{\sin 4 x}{4}, \cdots
$$

6. [10 pts] For all real numbers $a_{i}, i=0,1, \cdots, n$, prove that

$$
2 \sum_{i=1}^{n} a_{i}\left(a_{i}-a_{i-1}\right)=a_{n}^{2}-a_{0}^{2}+\sum_{i=1}^{n}\left(a_{i}-a_{i-1}\right)^{2}
$$

7. [20 pts] Let Ω be a rectangle $A B C D$ given in the following figure. Consider the problem $-\Delta u+4 u=f(x, y)$ in Ω, associated with the boundary conditions

$$
\begin{array}{llll}
u=0, & \text { on } A D, & u=5 & \text { on } B C, \\
\frac{\partial u}{\partial y}+u=5, & \text { on } D C, & \frac{\partial u}{\partial y}+2 u=6 & \text { on } A B
\end{array}
$$

Write the weak formula for this boundary value problem. Discuss the existence and uniqueness of the approximate solution.

