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Abstract
Heat and mass transfer between a horizontal moving water film and air flowing over the film
is theoretically investigated. In the present theoretical model, the flow of air over the moving
water film is assumed to be laminar and steady in Cartesian coordinates. The governing
equations are the continuity, momentum, energy and concentration equations. These governing
equations are in a dimensionless form. By introducing new proper independent and dependent
variables, the governing equations are transformed to a set of dimensionless differential
equations. A computer program in FORTRAN language is developed to solve this set of
equations to determine the distribution of the dimensionless velocity, temperature and
concentration. Also, local values of Nusselt and Sherwood numbers for different values of
Reynolds number are calculated.
Comparison between the obtained results and the previous works show good agreement. The
results show that, Nusselt and Sherwood numbers increase with increasing Reynolds number.

Keywords: Theoretical study- Moist air - Heat and mass transfer, Evaporation, Laminar flow.

NOMENCLATURE
C  Concentration of water vapor in the flowing air kg/m’
¢’ Dimensionless concentration, C” _L=6 -
c,-C,

¢,  Specific heat at constant pressure Jkg K
D Diffusion coefficient m/s
d;  Half the vertical height of the duct m

h  Heat transfer coefficient WAm’. °C)
h,  Mass transfer coefficient m/s
hr  Latent heat of vaporization Jikg
& Thermal conductivity W/m K

~kr Relative thermal conductivity, ky/k; --

L Length of water panel m
L’ Dimensionless length, L/d, --
Nu  Nusselt number, Nu= W
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P Pressure Pa
Pe  Peclet number, Pe=Re Pr -~
py  Prandtl number, Pr= c—iﬁ N
gw  Heat flux at the wall W/m?
Re  Reynolds number, Re = 4 -
v
: v
Sec  Schmidt number, Sc= —5 -
sy Sherwood number, Sh = by (24, =) '(23‘ =) .
T Temperature K
T,  Wall temperature K
7., Ambient temperalure K
u, w  X- and z- components of velocity m/s
U, W Dimensionless velocity components in X- and Z-directions -
x,z  Horizontal and vertical coordinate m
X, Z Dimensionless horizontal and vertical coordinate -~
y  height of water in the ducl m
Greek Symbol
«  Thermal diffusivity m? /s
S Velocity ratio, uifuy; —
w  Stream function m’ /s
y# Dynamic viscosity of fluid kg/m.s
v Kinematics viscosity of fluid m?/s
p  Density kg/m’
. . T -T
@  Dimensionless temperature; 6= = -
T, -T,
Dh
[T  Dimensionless group,T1 = —~—‘&—(C,, -C.), --
kl (Tn _Tn)
subscript
il: Air o : interface av: average
2: Water w: free stream i inlet

1. INTRODUCTION

Heat and mass transfer processes
through air-water interfaces are of a major
importance in many engineering applications.
Analysis of heat and mass transfer from a
gas-liquid interface is of particular interest
for water thermal pollution where, an air
stream flowing parallel to surface of water
reservoir, creek, or river is uscd to dissipate
heat. Also mass transfer problems with
phase change, like cvaporation, involve heat

transfer, and the solution needs to be
analyzed by considering simultaneous heat
and mass transfer. Some examples of
simultaneous heat and mass transfer are
drying, evaporative cooling, transpiration
cooling, combustion of fuel droplets, cooling
by dry ice ...etc.

Heat and mass transfer govern the process
of evaporation from a water surface into
airflow, The boundary layer, between
air-water flows, incorporates a resistance to
both heat and mass transport processes. Al
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low temperatures the process is mainly heat
transfer controlled, since the concentration
difference across the boundary layer is large
as compared to a rather small temperature
difference. At low temperature difference,
the required heat for vaporization of water at
the surface to the {lowing atr is transferred
by convection from the flowing air stream
and by conduction from the water under the
surface due to the sensible heat of the water
itself. With increasing gas temperature the
temperature difference between the surface
and gas, and consequently, the heat transfer
rate increases. The concentration difference
increases as well because of the combined
increase in temperature and saturation
pressure at interface. Consequently, the
whole process of evaporation becomes mass
transfer controlled and the mass transfer
resistance is the governing factor.

In pure superheated steam the mass
transfer resistance does not exist, since the
gas consists only of the evaporaling species.
This explains why the evaporation into pure
superheated vapor is greater than into dry air
at higher temperatures.

Evaporation of ltquid into its own vapor-
air mixture is a problem of coupled heat and
mass transfer, which was studied by
Schwartze and Brocker (2000). The obtained
model can be predicted, theoretically, the
effect of evaporation ratc and the inversion
temperature for different drying process.
Also, it is useflul in the design of drying
processes and estimation of the feasibility of
different process options.

H. Charles Newton and Masud Behnia
(2000) studied the prediction of pressure loss
and void fraction in gas — liquid pipe flows.
The two-dimensional model is solved in
each phase, for low Reynolds number only.
The only empirtcal information required in
this approach, was specification of the flow.

Eames et al. (1997) have collected a
review on the evaporation coefficient of
water. It is concluded that, molecular
collision in the vapor phase and heat transfer
limjtation in the liquid phase can have a

considerable influence on experimental
gvaporation rates.

Combined heat and mass transfer
processes that occur when water evaporates
from a-flowing film in an inclined channel to
air stream, have been investigated by Zheng
and Worek (1996). It was found that the
combined heat and mass transfer in film
evaporation can be enhanced by adding rods
to the plate surface to agitate mechanically
the flowing water film and air strcam.

Sheikholeslami and Watkinson. (1992)
examined the effect of steam content on the
rate of evaporation of water into moist air
and superheated steam at elevated
temperatures. Their experimental results
confirmed the existence of inversion point
temperature, above which the rate of
evaporation of water increases with
increasing in the steam content of the
medium.

Kuan-Tzong Lee (1998) examined the
mixed convection in horizontal rectangular
duct with wall transpiration.

Franca, F. and R. T. Lahey Jr, (1992) was
studied use of drift~flux techniques for the
analysis of horizontal two phase two
component flows

Chow and Chung (1983) investigated,
numerically, the evaporation of water for a
laminar gas stream over a flat plate using the
governing equations for heat and mass
transfer, and derived an iterative similarity
solution to the problem. Its numerical results
show that, for the same mass flux of the free
stream, and at low free stream temperatures,
water evaporates faster in air than in moist
air and in superheated steam. However, the
trend is reversed at high free stream
temperatures. The combined effects of
higher heat transfer coefficients for steam
flows and the interfacial temperature
depression can explain the existence of the
inversion temperature by the presence of air.

In the present work, numerical study of
heat and mass transfer from moving a
water film to moist air flowing over a water
film inside a tcst section is examined. In
most the engineering applications, heat and
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mass transfer occur simultancously and
often these are strongly coupled.

2. MATHEMATICAL MODEL

A schematic of physical model under
study is shown in Fig.(1), which shows the
coordinate  system  and  dimensional
nomenclature. The origin of the coordinate
system is taken at the point at which the wall
under moving liquid The fluids are
considered in parallel and co-current motion
and the flow is assumed to be laminar, two
dimensional, and incompressible. Before
contact, the velocity and temperature of both
fluids are uniform and correspond to free
stream conditions. It is assumed that the
fluid properties are constant for the range of
temperatures considered. The upper fluid is
a mixture of water vapor and air, and the
concentration of water vapor in the free
stream air is expressed by its mass fraction.
The goveming equations of this flow consist
of the continuity, momentum, energy and
concentration equations.

The flow is axi symmetric flow and is
assumed to be laminar, and steady. The
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Equations (1-5) are the continuity
equation, x-momenturn  equation,  z-
momentum equations, energy equation and

......................

du,  du, __L@+&{azsf, +62u,.]

_L%+&[azw,. R

effect of gravity force and heat dissipation is
neglected. Moreover, uniform velocity and
temperature profiles, at the inlet of the duct,
are assumed.

To put the governing equations in
dimensionless form, one can define
appropriate dimensionless independent and
dependant variables.

Solving the flow describing equations,
velocity and temperature  distributions
throughout flow field can be determined and
hence, the physical quantities of the flow can
be calculated, such as heat and mass transfer
coefficient and Nusselt and Sherwood
numbers.

2.1 Governing Equations

In the following analysis, the flow is
assumed to be laminar and steady. The used
coordinate system is shown in Fig. (1). It is
suitable to select the Cartesian coordinate
(x,z2) to express the flow goveming
equations. The flow describing equations are
continuity, = momentum, energy  and
concentration equations. They can be written
as:

concentration equation respectively. Where | = P A
w, u are the velocity component in z and X BRSO = - D
direction. The temperature, concentration, S = < I S P

density and specific heat of the fluid at
constant pressure are denoted by 7, C, p and Water

Cp; respectively. In the forgoing equations, 4 Fig.(1) Schematic diagram of the problem
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D and % are dynamic viscosity , diffusion
coefficient and thermal conductivity of the
fluid; respectively.

Moreover, in the present case, it is
satisfactory to solve the governing equations
in full domain of the flow field where i equal
1 for moist air, i equal 2 for water.

The flow, heat and mass transfer inside
the duct for laminar and sicady flow are
considered. In this case, the corresponding
continuity,  momentum, energy  and
concentration equations (1 — 5) must satisfy
the following boundary conditions, as shown
in figure (2);

For water:

At x=0,05z=<y
wy =0, u; =1y, T=T)y

At x=L 05z=%y .
a—Mz-=0,w=l’),—a£=0
ox ax
0 <x =L, z=0
wr =0, u; =0, T=Tn,
For moist air:
alx=0,y<z$2d,a N

wy =0, uy=tt;, T=T C=Ciu
at 0<x<L , z=2d,

wp = O,H;=0.. T= T;w_ C=Cfgo

at

at x=1L, y<z_§2d,, (6)
%=0 . w=0,£TL=(} ,a_Cl=
ox ox ox
for interface et 0 <x <L, z=y
LI
' s ks Py
>
Moist —L
Air
—_—
[ —_t
g I /_LDterTace
— Water —1

X Fig.(2) Schematic diagram of the duct
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Where C, is concentration at interface
surface between water and air and uj;, uy;
Ti» and C, are the inlet velocities, ambient
temperature and ambient concentration
respectively.

Solving the governing equations (1-5) with
their boundary conditions equation (6), one
can obtain the velocity and temperature
distributions through the flow field. Knowing
hydrodynamic and thermal flow field local
heat and mass transfer coefficient, and in
turn, local Nusselt and Sherwood numbers

can be determined. Local heat transfer
coefficient is defined according to the
following equation:
_ ,{[QEJ
h= a’ % /sy ,
7‘0 _Tno ’[:J_Tdo
_ (?EJ
m’ 0z Jo..,
= = ‘@ (T-a)
C, -C, ¢, -G,

And consequently local Nusselt and
Sherwood number can be expressed as:

LA L)) h, (2d, - y)
k D

Average Nusselt and Sherwood numbers can
be expressed as:

1,
Nu,, =(lJ _[Nu.dx )
L)

f.
sh,, =[l]. [Sh.dx
L)y

, Sh= (7-b)

(7-c)

Equation (7-a) expresses local heat
transfer coefficient & as a function of heat
flux at plate g", the lower temperature 7,

and the temperature of free stream flow 7,
and local mass transfer coefficient hy, as a
function of mass flux m', the concentration
at water surface and moist air flow.
Referring to the definition of local Nusselt
number equation (7-b), d; is the air flow

passage half height and k thermal
conductivity, in the definition of Jlocal
Sherwood number D is  diffusion
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coefficient.  Equations (7-¢) represent the
definition of average Nusselt and Sherwood
numbers.

Seeking for simplicity, one eliminates
the pressure term in the momentum equations
(2 and 3); by differentiating equation (2) with
respect to (z) and differentiating equation (3)
with respect to (x) and by subtracting one of
the obtained equation from the other
equalion. Moreover, one introduces flow
vorticily @ and stream function i where @
and ¢ take the following definitions:

[?E—éu—) w:—a—w and u =
ox Oz Ox

Substitution of the vorticity and stream
function definitions, the momentum equation
can be rewritten as:

2 2
Svow Sydw_ )0 0ot g
0z 0« Ox Oz ox° Oz

oy
5, &

According to the forgoing definitions
(8), the vorticity @ can be expressed in term
of stream function y as:

o~ {20,2%)

With the aid of the definitions of
stream function and flow vorticity (8), the
energy and concentration equations (4,5) can
take the following form:

2
owor apar_ [T 2T
dz ox Ox Oz o

Dy 8C By C _ D{ac ac} 42

_r T = — 4

Where « is the themmal diffusivity and is
defined as:

k
a= ——
pCp
Equations (9-12) must satisfy the following
boundary
For water
x=0,05z5y:
v =-uy, Y =0, T=Tx

&z
At x=L 0<z<y.

2
6:,0__0 (4 -0 67"2:0

ozl ox " x

at 0=<x <L, z=0
W g o 1o,
o oz

For moisi air
alx=0,y<z<2d; :
W _y ¥

— =Uy;.

Ox Oz
al 0<x<[ 6 z=2d

oy aw
ar 5 1 C=C

T= T,J'w . C=wa

at x=L, y <z <2d, (13

W _oy 8 0N _y 6,
Ox ox o ox
for interface at O <x <L, z=y
ay; a‘.ff
‘1 iz
6T 8?” oC
k=t =k 2+ Dhy —|g..,

Solving the governing equations (8-12),
one can obtain the velocity and temperature
distributions through out the flow field.
Consequently, the local heat transfer
coefficient, and in turn, local Nusseit and
Sherwood number
2.2 Dimensionless Form of the Governing
Equations

To put the flow describing equations in
dimensionless form, one introduces the
following definitions of the dependent and
independent variables as:

o=L"To wo ¥V oo ,w=2

7, "Tu) u,d | Uy, ‘(d by
ot x=X 7.2 LG
Uy d, d, G -G

Where 8, W, £2and C are the dimensionless
temperature, the dimensionless stream
function the dimensionless vorticity and
dimensionless concentration respectively, ¥
and U are the dimensionless vertical and
horizontal velocities respectively. uy is the
reference  velocity,. The dimensionless
Cartesian coordinates and the dimensionless
distance are denoted as X and Z respectively.

3

(%
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Reynolds, Prandtl, Schmidt and Peclet
numbers in the following sections are
denoted as Re, Pr, Sc and Pe respectively,
they are defined according to the following
relations:

Re= pud, , v .

M o
Pe=Re. Pr

Using the above dimensionless forms of the
dependent and independent variables (13)
and the dimensionless previously mentioned
numbers (15), the dimensionless form of the
momentum, vorticity, energy and
concentration equations can be rewritten as:
¥ v 1 |de o0 16)
8Z oX 00X 8Z Re 6}'(2 77

'y v
=Ftaxz +Bz_2] .................. (17)

2000 0% 00 _ {69 a@} -
[cs

8Z aX oX 9Z ax* oz}
yeCc. aveC 1 [oC a C (19)
3Z oX ox oz Resc|ox®

The dimensionless equations (16-19)
must satisfy the following boundary

conditions in
- For water
X=0,0=<Z=<yld; .
M, M 9-000r10
oz ax

At X=L/d; 0< Z<y/d, .
v _ . Y a6,

——=0, =0, —~ =0

oz 6X oxX

at 0<X<L/id, Z=0
@P__ 2}1_0 @=000ri0
oX 0z

For moist air
atX=0,ypdi<Z<x2 :
Viag ov

— =0, ——-)’QOOC =0.0
oX o7
at 0<X<lid; , Z=2
M 0, %0, 6=00 =00
aX o7

at X=1L/d; , y/d,: <7 <2

ar =0 a_w_zg %20 _BC'

1] L] r = 0
X oz oxX X
forinterface ar 0 <X <L/, Z=y/d,
p oty a2y 1
Hy—= |1 =42 2
872 87°
, 6,=0,,C =C,
a8, o0 ac’
— =kr—=+]— s 20
— =l =gy (20)

One can solve equations (16-19) with the
aid of boundary condition equations 1o obtain
the dimensionless velocity and temperature
distributions (hrough out the flow field,.
Consequently and with the aid of equation
(8), the local Nusselt number can be derived
as a function of dimensionless temperature
as:

Nu=(ﬁJ , Sh= [ﬂ] (21
dz @Z=y!d dz @Z=rld

2.3 Numerical Technigue

Considering a mesh covering the domain of
the flow field with lines parallel to the X -
axis and Z-axis; and with uniform step size,
each node of the mesh is identified by two
identifiers i and j, as shown in Fig. (3).
Considering the X -direction, the value of X
at any column i+/, can be evaluated
according to the following relations:

X =X; +tAX

Where { varies from 1 corresponding to X =
0, to M corresponding to X =10, where the
total number of columns equal to M. AX are
the value of step size in X — direction. It is
clear that, AX depends on the selected total
number of columns M and the maximum
distance in X- direction. In the same manner,
the value of Z at any row j+/ can be
evaluated according to the following relation:

ZJH-,' = Z; +AZ

Where j varies from 1 corresponding to Z =
0, to N corresponding to Z = 2 and the step
size in Z — direction which depends on the
number of rows N and the maximum distance
in Z direction.

The vpartial differential forms of the
governing equations are transformed to sets
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of linear algebraic equations. Solving these
sets of equations, using Gauss-Siedel
iterative method, the hydrodynamic, the
thermal and concentration flow fields can be

z

L+

T i1,
1,j-1

X
Fig.(3) schematic diagram of the used mesh

obtained. Consequently, local and average
Nusselt and Sherwood number can be
derived with the aid of their definitions.

2.4 Numerical Procedure

The systems of algebraic equations are
solved using Gauss-Siedel iteration method
with the above technique. The calculations

250

| r—mmm.n.m;sl
----- Eammy i olapy |
‘— — - P sudy. N0 |
200 i
B
=
w
‘glw
F]
=
=
: -
EIM% ~. T e
8 ~\w
L o |
|
o 1 | 1 1 h 1
0 2 4 [ B 0

Dimensioniess Distance, X

Fig.(4) Comparison between local Nusselt
number at Reynolds number equal 2500

are carried out on non uniform grid size
distribution with factor is 1.001. A non
uniform grid with (6000*200) is considered
to give grid independent results.

Because finite difference technique is used
to solve the momentum and energy
equations, the solution can become unstable,
i.e., as the solution proceeds; it might diverge
increasingly from the actual solution. A
simplified analysis of the conditions under
which instability occurs is established, the
results obtained there indicate that
convergence exists if:

AX « AZ .Re

The solution is carried out row by row,
Seeking for rapid convergence of the
solution, the obtained values of ({2, ¥,8, C.)
are used in the rest of equations of the rest
(£2%,8, C')'s. This iteration is continued till
either the percentage relative error is equal to
or less than the prescribed allowable error
(maximum error < 1*107).

3. Results and Discussion

In this section the obtained theoretical
results are presented and discussed.
Accordingly, the theoretical resuits including,

30

Local Sherwood Number. Sh
g
I

N

2 q a8 ] 10
Dimensionless Distance, X

Fig.(5) Comparison between local Sherwood
number at Reynolds number equal 3000
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derived profiles of dimensionless stream
function, dimensionless temperature and
concentration in the evaporation fitm of moist
air as well as the local and average heat
transfer and mass transfer coefficients are
presented. Also a comparison between the
present results and that of previous available
works are also presented in this section.

In order to check the wvalidity of the
model, a comparison is made between the
numerical results from present work with the
corresponding experimental results reported
by Eames, LW et al [2] as shown in Fig. (4).

Also, another check of the model is made
by comparing the numerical results from
present work with the corresponding
experimental results reported by J.Taylor
Beard [9] under the conditions of Re = 9000
as shown in Fig. (5)

According to figures (4-5), the present
model is fairly valid to predict the flow

properties under the studied conditions in all
cases of present study.

In this section the effects of the
operating parameters such as  Reynolds
number and velocity ratio are presented.
Figures (6-8) show the dimensionless stream
function, temperature and concentration
distribution at different values of Reynolds
number. In general, the stream function,
temperature and concentration  are taking
larger values for Jarger Reynolds number.

Fig. (6) Illustrates the flow pattern

for0020X V VB0020 XZ Zthe flow

issues inside a duct at Re = 2500,

5000 and 12000. The streamlines

shows that at Re=2500 the flow issues

inside the duct and goes parallel to the
duct wall rapidly, while at Re=500z

CCCCECCCECEeeeeeeeee C

0 appear the stream lines take larger

values. At Re=12000 higher values of

stream lines inside the duct are

obtained.
N
8§
ﬁ ¥ T T T T T T T
@1 : i
e . 12 12 S 1.2 12
- 0.8 E o8 0B 0.8 08
o . 04 DA - 0.4 04
g 1 1 R | 1 1 1 1 1
g 1 2 3 5 6 7 ] 9
Re=2500 ° Dimensiontess Distance, X
~
g
E ] T _I T I T L) 1 L)
e h . 7
o L ot 1 1.1 14 Tt o
2 0.7 07 07 07 0.7
5° |
7] —_t 1 1 1 L] ] 1 1
b 1 2 3 3 [ 7 8 ]
£ . . .
Re=5000 © Dimensioniess Distance, X
]
g
§ T T T T l‘ T T T
2 1.5 15 15
a 11 1.1 R 5.1 11 4
E 07" 07 0.7 07 0.7
8 -
f e 1
Re=12000 = Dimensionless Distance, X

Figure (6) Stream lines for different Reynolds number
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tmensionless Distance. Z pimensionless Distance, Z

Re=2500
Re=5000 & Dimensionless Distance, X
Fh“igure (7) Isotherm lines for different Reynolds number, [1=0.05
g l
g ‘. | — =] ="' L T L L I L L L
=
é —a—— —
'g il M T P L L
E b 1 2 3 4 g [ 7 8 9
Re=5000 © Dimensionless Distance, X

Figure (8) Iso-mass lines for different Reynolds number

z I R A
Re=5004
X=2
Nyg . R x| A
- -. — — = A= 8
g oy ==l g
2 Lo\ 3 N —
9,2 R ]
8 P i
; ; 2 i :
3 ;] :
k= i
ey Y :
g £,
DO.‘ r— - - '..o' J -
AP a4 Iy o4 08 12
- g Dimensionless Vertical Velocity, W
j = , L L Fig.(9-b) Dimensionless vertical velocity
0 0z 04 08 08 1 at Reynolds number equal 5000

Dimensionless Horizontal Velocity, U

Fig.(9-a) Dimensionless horizontal velocity at
Reynolds number equal 5000
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Fig. (7) Illustrates the isothermal
contours for the flow issues inside a duct at

1 1 L 1
10000 15000 20000 25000

Reynolds number, Re
Fig.(10) Variation of the average Nusselt
number with Reynolds number

Re = 2500 and S5000. The temperature
distribution  denotes that the flow
temperature is high at the upper wall and get
cold far from the upper wall as expected.

Fig. (8) Illustrates the isomass contours for
the flow issues inside a duct at Re = 5000.
The concentration distribution denotes that
the flow concentration is high at the lower
wall and get poor far from the lower wall as
expected.

Figures (9-a and 9-b) illustrate the
velocity distributions in the X- and Z-
directions for the flow issues inside the duct
at Re = 5000. The figures denotes that,
U(Z), the flow velocity takes the full
developed shape far from the inlet.

Fig.(10) illustrates the relation
between average Nusselt number and
Reynolds number for different values of.
Prandtl number. The values of Nusselt
number number, generally, increase with
increasing Reynolds number. The values of
Nusselt number number, generally, increase
with increasing Prandtl number.

Fig(11) illustrates the average
Sherwood number against Reynolds number
for different values of. Schmidt number.

Average Sherwwood Number, Sh

The behavior of Sherwood number
looks like that of Nusselt number.

249
A
B n=0.4
505 -]
MWP{— — .. Sc=085 [ S -
————— 5065 P>
- . ’f
o
189G ——- Py
Py
P
m 1 1 ] L
0 10000 15000 20000 25000

Reynolds number, Re
Fig.(11) Relation between average Sherwood
number for different values of Reynolds number

Evaporation, and in tumn, rate of heat transfer
is decreased. But interaction between heat
transfer and mass transfer appears in the
dimensionless group /7

Conclusion

In the present study, the evaporation
process of water vapor to moist air is,
theoretically analyzed. The effects of process
parameters  are  investigated.  These
parameters are presented by the following
dimensionless physical quantities Prandtl,
Schmidt, dimensionless group 7 and
Reynolds  numbers.  Considering  the
theoretical proposed model, it is found that
the increase of Prandtl and Schmidt numbers
cause increase of Nusselt and Sherwood
numbers.

The following relations comrelate the
theoretical results, where the Nusselt and
Sherwood numbers are expressed as
functions of Reynolds, Prandtl and Schmidt
numbers:

Nie= 1.145 Re" ¥ pr*¥ (14.17%%)
Sh = 1.252 Re®1? §c%¥

The Carried out comparisons between the
present work and previous study is exhibit a
fairly good agreement.
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Comparison between the obtained results
and the previous works in case of steady
flow shows good agreement. Empirical
correlation for Nusselt number and
Sherwood number are obtained.
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