Minoufia University
Faculty of Engineering
Shebin El-Kom
First Semester Exam.
Academic Year: 2014-2015

Max. Marks. 100

Year: Post Grad. (PhD. Prep.) Dept.: Mechanical Power Eng. Subject: *Mechanical Measurements*

Code: MPE 716
Time allowed: 3 hours

Date: 10/1/2015

Please do not use a pencil to write.

(Note: Numbers of Exam. Papers are 3 pages.)

Assume any missing data from your point of view in the limits of what you studied.

Answer all the following questions:

Question-1

[18 marks]

Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} x, & 0 < x < \pi \\ \pi, & \pi < x < 2\pi \end{cases}$$

- i) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$
- ii) Show that the Fourier series for f(x) in the interval $0 < x < 2\pi$ is

$$\frac{3\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] - \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$

iii) By giving an appropriate value to x, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Question-2

[25 marks]

a) Prove that the Fourier transforms satisfy the inverse Fourier relationship showing its graphical pair for the following time function

$$h(t) = 2Af_0 \frac{\sin(2\pi f_0 t)}{2\pi f_0 t}$$

b) Discuss briefly three characteristics of the Fourier transform

Question-3

[13 marks]

Discuss in detail basic noise measurement systems

Ouestion-4

[24 marks]

a) The two resistors R and R_s are connected in series. The voltage drops across each resistor are measured as

$$E = 10 \ V \pm 0.1 \ V (1\%)$$

 $E_s = 1.2 \ V \pm 0.005 \ V (0.467\%)$, along with a value of

$$R_s = 0.0066 \Omega \pm 0.25\%$$

From these measurements determine the power dissipated in resistor R and its uncertainty.

b) A certain obstruction-type flow meter (orifice, venture, and nozzle) showing in the following figure is used to measure the flow of air at low velocities. The relation describing the flow rate is

$$\dot{m} = CA \left[\frac{2g_c P_1}{RT_1} (P_1 - P_2) \right]^{\frac{1}{2}}$$

Calculate the percent uncertainty in the mass flow rate for the following conditions:

$$C = 0.92 \pm 0.005$$

$$P_1 = 25 Psia \pm 0.5 Psia$$

$$T_1 = 70 \, {}^{\circ}F \pm 2 \, {}^{\circ}F, T_1 = 530 \, R$$

$$\Delta P = P_1 - P_2 = 1.4 \ Psia \pm 0.005 \ Psia$$

$$A = 1.0 \text{ in}^2 \pm 0.001 \text{ in}^2$$

c) An inclined manometer with the inclined tube set at 30 degrees is to be used at 20 °C to measure an air pressure of nominal magnitude of 100 N/m^2 relative to ambient. Manometer "unity" oil (S=1) is to be used. The specific weight of the oil is $9770 \pm 0.5\%$ N/m^2 (95%) at 20 °C, the angle of inclination can be set to within 1 degree using a bubble level, and the manometer resolution is 1 mm with a manometer zero error equal to its interpolation error. Estimate the uncertainty in indicated differential pressure at the design stage.

Ouestion-5

[20 marks]

a) Explain with neat sketches; Photovoltaic Cells – Ionization Transducers.

b) Explain with neat sketches; Capacitive transducer – Piezoelectric crystal.

c) A capacitive transducer is constructed of two 1 - in^2 plates separated by a 0.01 - in distance in air. The dielectric constant for air is 1.0006 . The allowable uncertainty in the spacing measurement is $W_d = \pm 0.0001$ in, while the estimated uncertainty in the plate area is ± 0.005 in ² . Calculate the tolerable uncertainty in the capacitance measurement in order to achieve the allowable uncertainty in the spacing measurement.

Prof.dr. Moustafa Nasr