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ABSTRACT:

This paper presents a new modification to the kx-z model of
turbulence to improve the simulation of the turbulent round Jjet
flow. It recommends the use of the "Eddy Relaxation® effect which
has the same "Eddy Viscosity"” assumption; -uv = v feu/ér) where
v = cp(k’/s; with ¢ constant in the radial direction; but C
adjusted at each downstresam station by the local flow parameters.
The explanation of the idea is presented. The model is implemented
in a finite difference program to solve its equations. Adjustments
are made to the time relaxation coefficient 3 in order to give
best agreement betwesen the predicted and the measured spreading
rate of the jet half-width. Comparisons for the Jjet spreading
rate, jet half width, and the decay of the 3jet center-line
velocity, with the downstream distance x, are presented £or the
predicted results by both the original and modified k-&£ models as
well as the experimental measurements. Mean velocity profiles,
turbulent kinetic energy profiles, and shear stress profiles in
the self-presexving region ,X%/D>70, are compared to¢. The results
indicate that the new model predicts c¢orrectly the behavior of the
round jet flow in the stagnant surrcounding and the agreement with
the experimental measurements is within the experimental accuracy.

1- INTRODUCTION 3

The turbulent round jet is of a great practical importance and
it has wpeculiarities that introduce difficulties for various
computer models of turbulence. Employing the different turbulence
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models, the velocity field in a two-dimensional plane Jjet is
calculated quite accurately but large errors occur for round jet.
Specifically, the spreading rate (dyuq/dx); where (y“q) ig the
distance from the center~line to the location where the vwvelocity
is half the center-line velocity; of the round jet is
over-estimated by about 40 %. Experiments show that t¢he rate of
spreading, for the half width, 1s 0.086 for round free jets while
the k-¢ mode (i], for example, predicts a value of 0.114 for the
same flow. In the round jets, mean and turbulent velocities decay
rapidly in the stream wise direction. Therefore, one might infer
that, whenever external conditions produced either by rapid
changes or by large imbalances between generative and destructive
agencies, avallable models were liable to give anomalous results.
Here, the simpler mean-flow closure 1is focused on the k-«
model. For constant (unit} density flow, this model determines the
Reynoids stress through the isotropic viscosity hypothesis

IJLU.J_ = 5 6L

K= 2 s, e

and in particular

where

6U is the KRONECKER delta and

1 & Ui a Uj
Su = mean strain = 5 3~§j + E_Et

and v, is the eddy viscosity which can be related to the turbulent
structure of the flow by the Prandtl-Kolmogorov {2,3] relationship
as follows:=-

kz

[

woo= CH (3)

L
Y 3

where Cp is a constant, k is the turbulent kiretic energy { ;~ul )

au
- LY

and ¢ is the dissipation rate of % ( © = v [ E_E,] ]
j

kx and « are determined from the transport equations :-

Dk

D—t-=Tk+Pk"£‘ e a ot et b el [4)
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De &
and _E = T‘ + ‘]; [ C‘:‘ P - CG: o ] ............ (5)
respectively.

The approximate expressions for Pk, T, and T_ ara :-

a 0. a U, & U,
P = Production rate of k = v [ §_§: + E_Ei ] 5—;:
a UL
= - a4 —
L] xj
& K & k
Tk = Diffusion rate of k = EHE_[ ( vy + ;L ] i ]
L k.t i
& [n & &£
Tc = Diffusion rate of ¢ = 3—;‘[ ( bt ~; ] E_EJ]

The empirical coefficients widely used 1in the standard k-e&
model have the following values :-
C =10.09, C_  =1.44, C =1.92, ¢ =1.0 and o =1.3
M £4 £z k1 R
with these values, wall boundary layers and the plane jet flow are

" well predicted.

' 2- SURVEY OF THE PREVIOUS WORKS 1

Equation (5) is the siwmplest form of transport equation that
produces qualitatively correct behavior for £. In order to achieve
quantitatively good predictions, the attention was focused towards
the modification ¢f the transport egquation of £. Changing C.mL to
1.6 produces the corrxect rate of spread for round free Jjets Dbut,
in dcing that, any notion of generality has to be abandoned. There
have been several proposals for extending the width of
applicability of equation (5) while retaining somg semblance of
generality.

Three attempts have been made previcusly to medify eilthex Cn
or ng, all of them make reference to center-line values.

Launder, Morse, Rodl and Spalding (4] suggested the change of
c and C to: )
L

£z

Cp = 0.02 - 0.04 f
and Cg2 = 1.92 - 0.0667 £ ... ... ... {6)

where
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This modification 18 specially mrade to fit Rodi's {5]
experimental data for round jets and 1little universality was

claimed for it.
McGuirk and Rodi [6] proposed the modificaticen of Csi to:

C =1.4 - 5.31 iz a—duc’ 7
L =1 . ] I (7)

d UO
d x

Yo

The third attempt was from Merse {7]), who changed C‘:1 to:

x ¢ ul®
C = 1.4 - 3.4 [ - ——-} ................... (8)
=D

&1
e 84 X

The different modifications produce the same desired effect for
self-similar jets but differ slightly in the initial regicn
(x/8510} in which Morse's proposal fares Dbest. No convincing
physical explanation is provided to justify these modifications.

Pope [8)] introduced a term which may be considered as an
additional general rate of & due to the stretching of mean
vorticity. Pope argues that the stretching of turbulence vortex
lines by the mean flow has a significant influence on the process
of scale reduction. On the same scales, the turbulence
fluctuations are independent of the mean flow £field, hence the
vorticity vecter has no prefer directicon. Since, the vorticity of
the large turbulence motion tends to be aligned with the vorticity
in the mean flow, the mean straining of turbulent vorticity is
strongly corrected with the mean straining of mean vorticity.
Thusg, in flow regions where the mean vorticity is being stretched;
the turbulent vorticity is also being stretched. This 1leads to
greater scale reduction, greater dissipation, less kinetic energy
and, consequently, to lower effective viscosity.

In a planeg two-dimensional flow, the additicnal +term is
supposed to be zero because the mean velocity vector is normal to
the plane of the flow. For axisymmetric round jets, however, the
mean vortex lines are stretched as the jet enlarges downstream.
Therefore, the additiconal term raises the level of £ and reduces
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the Reynolds stress and the spreading rate,
The following modification form of the dissipation equation
is proposed by Pope:

D e z

=T +

b E=Te v x (Co B " Cue*Cex) —onnnn ®)

£a £9

where C‘alis a positive constant, Pope found that a value of 0.79
gives the correct spreading rate for Redi's Jjet ([3]. x is the
vortex stretching invariant. For axisymmetric flows without swirl
x takes the form:

s Tk 1® 20 avity
x=-: -‘— 3—? -a—-—x- 'E ............ (10)

where v 15 the radial turbulence fluctuation component.

Hanjalic and Launder (9] gave another proposal which bhas
certain similarity with Pope's proposal though it has been arrived
from a different line of exploration. The concept is that, energy
transfer rates acrosg the spectrum are preferentially promoted by
irrotational deformation and since energy in transit across the
sgsctrum ends up as energy dissipation, an additional term that
promotes higher rates of dissipation for irrotational than
rotational strains should be added to equation (5).

That term, for two dimensional thin shear flow, is egual to:

s Y 4 U ¢
_CSB (U - V) ﬂ E .................. (11)
where Ccs is a constant egual to 4.44.
It was proposed:
] (v = v¥) =0.33 % ... il {12}

Hanjalic and Launder [9] applied the new model; to round jet
flow. With the assumption of Equation(i2)}, rate of spread was
found to agree with 14 % while the standard@ k-« model gives 40%
over prediction.

Yule [10] suggested the use of a modified eddy viscosity
coefficient in which CP changes with the local flow parameters in
the axial direction while it stays constant in the radial one.

3—- The present Madelry

The standard k-¢ model relates the Reyncld's stress tensor
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uLuj toe the mean strain Sq using the isotropic viscosity
hypothesis Equation (1) as mentloned above. This assumption of the
isotropic distribution of v, forces the flow to behave as

subjected to pure action of strain, which employs the alignment of

the principal axes of E:TH with those of the mean strain S,
Another weakness is the inability to reselve an isotropy of the
normal stresses.

The standard k-« model employs the assumption that CP is
constant that produces fairy good results for relatively simple
flows in which only one Reynolds stress component is of importance
in the momentum eguation. However, Rodil (5] showed that C# cannot
even be considered constant in all simple shear flows. Therefore,
the standard k-¢£ (employing the eddy wvisceosity concept together
with a constant C ) lacks the universality reguired for jet flows
because of the inadeguate representation 4in this model of the

convective and diffusive transport of uv.

The above shortcomings indicated the strong need to modify
the present hypothesis which presents a direct linkage between the
stress field and the mean strain.

To proceed with the problem, one may relate to the situation
where the strain field is subjected t¢ a change: S_Lj can be
modified instantaneously while the deviatoric Reynolds stress RU'
being a property of the turbulence vorticity, requires a finite
time to change or relax to a rew value set by the new mean rate of
strain. In other words the large eddies retain their identity with
respect to their stress for a time proportional to the turbulence
time scale that relates to the large scales, defined as k/es where
the dissipation rate & represents the rate of energy out of the
eddies containing energy. A more explicit expression for the °'lag’
effect may be written upon introducing the integral length scale
in the time scale expression:

. 1-2

T =g {L/X ) .. T ETETRT (13)

where, L and k represent scales of length and velocity
respectively and relate to the large eddies and # the relaxation
time coefficient.

The description of the above phenomenon of relaxation is made
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upon considering the case of a thin shear layer flow where
Equation (1) reduces for the shear stress component to the form:

1,2 au

E\?=—c“k L(E-);] ............... (14)

The retard may be introduced in the above equation in the

following manner:

1-2 au , & uv

SC kL (g ) =Wt g (15)

where C; iz a modified eddy viscosity coefficient and +' is
clearly dependent on large eddy energy and dissipation rate.

Equation (15) has quasi-Lagrangian nature, therefore one may
use ;he idea of convection velocity for the eddies such that

U = 0.5 [ U « U . ] ............ {16)
aeny e min

Therefore, equation (15} becomes,

. irz &U _ , & uv
- Clu k L( 3y ) =uv + 7 Uowe 55 ~cr o (17)
Substituting from eguation (13) into equation (17) yields,
. 12 su . i,z (9‘1_}_\7
—c“k L[§]=uv+ﬂ(L/k ) comv B T (18}

Considering the case ¢f a free ijet in its downstream
self-preserving region, where the evaluation of the £flow can be
determined directly by the local scales o¢f length and velocity
that vary" with the downstream distance x and the longitudinal
distance y, the above equation can be simplified. Using the fact

that the shear stress uv can be expressed in the form:
Wo=av (%) gin)

where 7n = r/L, the equation (18} bhecomes,

. ez §u _ AL av o
_Cluk L(E_‘;):uv*—[kt/z]uconv—;

max
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dL ag

U
172 QoY max
dx

= | =
|

In order to eliminate the effect of the time constant
assumption, it seems reasonable to use "typical” values for k and
L on R.H.5. e.g. maximum kinetic energy kmaa and average length

scale over the jet-width L. For a particular value of x, it will
be seen that the first two terms on the R.H.S. reduce to the
multiple of a constant. Thelthitd term contains ,n (8g9/8n), that
has a radial variation as one crosses the Jjet from the
center-line. The effect of the third term is second order and can
be reasonably ignorad. Thus, equation (19) can be approximated to:

(. 12 au . L 1 dguv 4 __
-C k L -— = av + f3 [ u — ] uv
H ( Iy ) xi72 cenv T g x
moM max
or
., ir2 au _ T 1 & u_vmm‘
-C k L — J=uv 41 + 3 [ U —em ] -{20)
H ( ay ) k:./z cCoOnV H & x
max max

The above equation indicates that constancy of the bracketed
term that multiply f# on the R.H.S. of the equation can be achieved
when the conditions of self preservation are satisfied where:

1
av x U° &« — and T x x
Mo Thas xﬂ
In addition
i 1,2 1
[=1=2 k"] = E and kman b Umc.x x 3-{'
Therefore;
y 12 - au _
—C“k L(a—y)muv[1+ﬁconstant] ..... {21y

Substituting uv from equation {14) into the above equation

gives:
CP = C“ [ 1 + 2 constant ] .....
where
4 U ... @uv
constant = [ — ., T o ]
k uv & X

ma man
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4., MATHEMATICAL FORMULATION:

Calculations were performed numerically using a
finite-difference procedure {11] after implementing the modified
model inte the code. Because of the parabolic nature of the flow
under consideration a forward-marching procedure 1s wused. That
means, the properties of the fluid downstream are assumed to Dbe
influenced only by the conditions upstream. This procedure 1is
economical because the computer storage required is for two mesh
lines only and it is independent of the number of forward steps.

4.1.THE NUMERICAL MESH:

The numerical mesh and control volumes used to calculate any
scalar property ¢ are shown in figure (1)

= v 0
b=0 xY ﬁ ———TUpper
N =1 __i__f—T—J——’—’——T——F_’—_ boundary
Vst o e
L l;-/—fvj"';?‘\ CPD
QJ Py | s J

N ]

A

Q=0 . | . N . Lower boundary
Lb— sx —

Figure (1) MWumerical mach and control volumes

The grid divides the flew width into ({n-2) contrel volumes,
where n is the number of nodes. The node positions are at fixed
values of », where n = y/é, but the space between them increases
with the increase of the shear layer +thickness & as the flow
advances downstream. At all stations, the first and last nodes lie
on the lower and upper boundaries respectively. The grid 1is not
uvniform but becomes more dense in the regions where the flow
variables change rapidly in the direction normal to the axis of
symmetry of +the jet. Thirty three nodes were wused in this
investigation.

4.2. THE BOUNDARY AND INITIAL CONDITIONS:

FPigure (1} shows that the nodes affecting ¢ﬁ are related to a



M. 29 HM.S5.Mohamed.

known upstream scalar value ¢: and two unknown downstream scalar
values ¢,  and ¢, . Therefore, the solution of the algebraic
equation system needs the initial and boundary <c¢onditions to be
known.

The experimental measurements carried ouvt by M. 5. Mohamed
[12]), at the exit plane of a nozzle of diameter D = 0.1 meter and
nozzle exit velocity UJ= 62 m/s, are used to prescribe the initial
conditions needed in the prediction procedure. The mean velocity
component. U and the turbulent  kinetic energy k were available
directly from the measurements.‘The dissipation rate, on the other
hand, could not be directly measured in the experimeats. So¢, it is
obtalned form the approximate expression relating it to the
turbulent kinetic energy k and the mixing length !, described in
k-¢ model, Jones—- Launder [13]

ka/z
c = ETVTI .......... (23}
M

The initial mixing length t was divided into two regions
according to the initial U mean velocity profile. In the first
region, potential flow region where the velocity 1s uniform and
egual to U, the nmixing length is assumed to be 1=0.09 R (R is the
nozzle radius). In the second region, boundary laver region where
the velority decreases rapidly from U to zere, the mixing length
is taken 1=0.09 61 { S i5 the initial boundary layer thickness).

All over the scolution domain, U was kept constant and egual to
zero at the upper free stream boundary {(at the last node}, while k
and & remain as prescribed initially. The lower boundary was taken
the axis of symmetry of the jet,

The number of jiterations required £o give a converging
solution was specified by preliminary tests. The tests showed that
seven lterations are large encugh in order to obtain a stable
sclution.

B.RESULTS AND DISCUSSION:

The computed and measured behavier for the round jet are
compared in figs 2-10 and table (1). Figures (5-10) represent the
half of the jet since the flow is symmetric about the center line
of the jet.

The solution domain can be divided into three regions, the
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first one is the near nozzle zone or the potential core region X/D
% 7.0; secondly the transitien region 7 < X/D < 70 and the far
downstream region of the jet or the self-~preserving region X/D>70.

The solution was initially unstable in the potential core
region, as shown from the oscillation line in (dY;/z/dx} in fig.
{2), therefore a great number of iterations were needed. Then by
trial and error, an adjustment of the relaxation time coefficient
g to 1.2 was found to predict correctly the spreading rate of the
free round jet in a still ambient flaid {dY;/z/dx=0.086) which
agrees well with the experimental value {5]. This compared with a
value of 0.114 predicted by the standard k- model.

Figure (3) shows the change in the dimensionless jet half-width
(thfD) with the downstream distance (X/D). Beoth models expect
the same constant jet half-width 1in the potential core region
while the relaxation time model predicted lower value for (Y“q/D}
than the original model. The wmodified model responds correctly and
agrees with the experimental measurements.

Figure (4) indicates the decay of the jet centéer line wvelocity
1UD/U5) with the downstream distance (X/D). In the potential core
region, the jet center-line velocity remains constant and equal to
the nozzle veleocity Uj. Both models predict correctly the same
behavior that agrees well with the experimental data ({5]. The
relaxation time model conputed a lower decay to the jet
center-line welocity than the standard k- wmodel, in the
downstream region of the jet (X/D>8.0), that agrees well with the
experimental values.

It may be obvious from the above three fiqures (2-4) that the
origina% and modified k-£ models predict the same flow field in
the potehtial core region while they have different behavier in
the transit and self-preserving regions. The explanation of thisg
behavior is: Mear the nozzle the maximum shear stress gradient is

approximately esqual to zero (& ﬁ?;au/ax 2 0.0) and in turn C; x C

which means that the correction to :CH is negligible in this
region. This is required because the standard k~& model is known
to predict gocd results in the two dimensional mixing layer flow
which dominates the near nozzle zone. Far downstream of a free
jet, in the self preserving region, the new model produces a
censtant but wmodified value of Cu which is also needed to modify
the spreading rate of the jet half-width. So, the relaxation time
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model gives best prediction in the downstream region of the free
jet ; a zone in which the standard k-& model is kxnown to perform
badly.

The mean velocity profiles were found to be self similar in the
gelf-preserving reglon (%/D > 70.), since all of them follow a
pattern of a universal curve when normalized with respect to the
center-line velocity Uo and jet half-width (th), regardless of
the downstream distance (X/D) as shown in figure (5)., The self
preserving mean velocity profiles predicted by the new model are
in excellent agreement with the experimental data (14] as shown in
figure (6). The only notlceable difference between the calculated

_two mean veloclty profiles is that the computed one Dby the
modified model approaches the free-—stream condltions slowly near
the edge of the jet.

The corresponding kinetic energy profiles, shown in fig. (8},
also display satisfactory accord in view of the difficulties of
obtaining accurate turbulence levels in these high-intensity
flows. These curves were also found to be self similar when they
were normalized with respect to the sguare of the jet c¢enter-line
velocity u: and the jet half-width (¥ _ ) as shown in figure (7).
The relaxation time model predicts lower kinetic energy k than the
original model and both models predict excessive values than the
experimental one.

Pigure (10) indicates the shear stress profiles across the jet,
They were self similar in the self-preserving region when they
were normalized with respect fto the sguare of the jet center-line
velocity UJ and the jet half-width (Y ) as shown in figure (9).
The relaxation time model calculated lower shear stress values
than the original k-¢ model. This is expected since the decrease

. of C‘u will cause a decreass in the effective viscosity v, which
alsoc decreases the shear stress uv.

Table (1) shows a comparison between the spreading rate
predicted by the different modifications to the k-£ model and the
original model as well as the experiments [5]). It is obvious from
the table that both the relaxation time. model and Pope's model
agree well with the experiments. While Hanjali¢-Launder's (H-L's)
modification improves the solution but it still over estimates the
spreading rate.



Hansoura Engineering Journal (MEJ). Vol. 18, No.3, Sept. 1993,

] - — = K—£ model [}
IS oG
d:(yz/\ﬂx_ . _ |
0.08 (*""’"""“‘“"""'"““‘""’" |
0.03 |
—0.02 | IS I VRTINS AN R0 SO O S N T WA T N |
¢ 25 50 75 100 f'0125 150
Fig{2) Th@ qumrﬁag rote of the jel hoff—width with
downstream distonce.
20 -
YME n;—":x—f mﬂdi“fi:] l P
15 -J_ = Experiments [ o
B
mE
5 ’
I ,,’ :
I ;
ﬂ“ EL I IER IS I S A 10 O W O TN O I A O O T A o |

6} 25 50 75 100 W’I 25 150
Fig.{3) The jet half—width with downstreom distance.

1.0
. Relaxation |
%JQ T e eae T
X oooo Experiments [S)
0.8 E
Q.4 _-'
0.2 !
T T W S ]

s Q 25 S 75 xmwws 150
Fig.(4) h‘:&ﬂm of the g velocity




th,

33

M.5.Mohamed,

1.0 3 .

U/ U

0.8 . Sses X/B=10s
+++++X/D:1¢O

G.%

.4

0.2

0.0

0.0 1.0 20 Yy o 3.0

Fig.(5) Self similor dimensionless mean velocity profiles
in the self—preserving region.

‘lu./(fjuo — ﬁi‘%’?ﬁfé’e;ﬁ?ﬁ model

0.8 poooo Experiments {14]

0.6

0.4

0.2

0.0 vt v v e ey v e s g LS w11
0.0 1.0 2.0 Y/Vpa 3.0

Fig.(6) Comparison between lhe dimensionless meon
velocity profiles.

0.09
2
K7 Us ooooo X/D=71
& a assaa X/D=105
0 06 4 +4+r+ L/D=140
’ iy
&
0.03 ‘e
&
. ® ry
k-]
0.00 ol S O S Y N T O A et ! IM
0.0 1.0 2.0 Yy 3.0

Fig.(7) Self similar dimensionless lurbulent kinetic
energy profilas in lhe self—preserving region.



Mansoura Engineering Journal (MED). vol. 18, No. 3, Sept, 1993, M.

0.12
z e Relaxation time model
K/ Vs T - = — K—F maodel (1]
0.09 £ " vooon Experiments  [14
: r N
E \
-
0.06 £
£
o
F
£ _— .
.03 ‘E' a \\
o
£ a .
E e S \
O 7010 [ TR VR W B S Y R A S AR R AL A - N PR I
0.0 1.0 2.0 YMp 3.0

Fig.{8) Comparison between lhe dimensionless turbulent
kinetic energy profiles.

0.03 F
WU E
=L eyl
ooz £ 0. mmiE
=
Eoe .
0.01 F .
C & 5
Fe .
9‘0
0.00 E_leu‘wamL_
g 1.0 20 Y/, 3.0

Fig.(8) Sell similar dimensioniess shear stress orofiles
i the self -preserving region.

0.05
Ul
J.04

Reloxotion time model
o - = ~ K-E modsl (1]
00000 Experiments (14]

<
)
K

(-

o

L&Y
I'I'T‘I'ITTFI"ITI'I'-.’T_I,TTET!Tfrqﬂ T

5

¢

©
o
AT

O(OO LE“J_l L O O T VA S B S A A M T T N O A

0.C 1.0 20 YA 30

Fig.(10) Comparison between the dimensionless shear
stress profiles.



M. 3% HM.5.Mohamed.

MODEL ExperlmeﬁfS{RéIéxatlon Standard| Pope’' s H~L"s
[5] time model k—-e ModificiModific
Spreading rate|  0.086 0.086 T 0.114 | 0.086 | 0.104

Table (1) Spreading rate for round jet in a still ambient.

The eddy Relaxation model uses the Prandtl-Kolmogeorov relation
pbetween shear and strain but with changing Cp with the local flow

parameters:
_ x* s u . k*
-—uv = £ —-— — where v o= —
H £ 8y t M o&

This produces a variation of (',"u in the axial direction but not
in the radial direction, as mentioned above. This 1{s desirable
because C'u ig, generally, reasonably constant across free shear
layers. It has been shown that the application of the new model in
the near nozzle zone, potential core region, Cy =C; which means no
change in the predicted velocity profiles by both models because
the original wodel responds correétly in that region. Whereas, in
the downstream region, the modified model produces a desired
decrease in CIu and thus a decrease in the jet spreading rate to
give excellent agreement with the experiments. The decrease in C
causes the reduction of the shear stress uv and the turbulent
kinetic energy k as mentioned above.

In Pope's modification and Hanjalic - Launder's modification to
the original k-£ model, CJu is constant and egual €0 0.09. It
recalled that Pope's modification involves an additional term in
the £ equation. This increases the lavel £, decreases the kinetic
energy k and, consequently leads to lower effective viscosity v,
that reduces the Reynolds stress and xeduces the jet spreading
rate, but without directly influencing the value of C“. The
Hanjalic - Launder’'s modification similarly results in a decrease
in v however the change would appear to be low as the predicted
jet spreading rate is greater than the experimental value.

B-CONCLUST ONS:

The models that use the eddy viscosity concept with constant
eddy viscosity coefficient Cp can predict consistent results for
mixing layers and for plane jet as well as wall boundary layers,
but the round dJet and particularly the rocund wake regquires
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different value. The new model suggested the employment of a
modified eddy viscosity coefficient C; that varies with the 1local
fiow parameters in the downstream direction while being kept
constant in the radiesl one. The present model predicts
successfully the pehavior of the free round djet in stagnant
surrounding specially the spreading rate and the decay of the
center-line velocity with the downstream distance.

The model shows a realistic behavior even in such details as
mean veloclty profiles, turbulent Xxinetic energy profiles and
shear stress profiles in the self-preserving region. In general,
the agresement lies within the experimental accuracy. The results
achieved suggest that this wmodel is close to the truth for the
present flow conditions.

7« NOMENCLATURE:

Ca:’ Ca: Constants in the k-= model.

Ct:_3 Constant for the additicnal dissipation texm.

CP Eddy viscosity ceoefficient.

C; Modified eddy viscosrty coefficient.

k Turtulent kinetic energy.

H Mixing length.

L Length scale.

Pk Froduction term in the kX transpert eguation.

r Radial distance.

Lo Round jet half-width.

Tk, TE Diffusion term in k transport equation and £ transport
eguation respectively.

u M=an velogity in the x~direction.

LIJ - Nozzle velocity.

U0 Center-line mean velocity in the x-~direction.

u Lengitudinal turbulence fluctuation component. -

v Radial turbulence fluctuation component.

uv Reynolds stress.

X, ¥, z Longitudinal, radial and tangential dimensional
co-erdinates respectiveiy.

th Half-width for round or plane jets.

c Dissipation rate of the turbulent Xinetic energy k.

u Fluid dynamic viscosity.
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Fluid kinematic viscesity.

v
W Turbulent eddy viscosity.

Fnr o Turbulent Prandtl number in kX and & transport equations.
I} Relaxation time coefficient,

T Shear stress.

T’ Relaxation time coefficient for eddies.
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