Mansoura University	MSc	Exam
Faculty of Engineering	Sept.	2013
Electronics& Comm. Dept.	Time:	3 hrs
Commenter Ar	. li sati su s	

Computer Applications

Attempt All Questions

- 1-a) Discuss, why are artificial neural networks(ANNs) worth studying ? What are ANNs used for ?
 - b) Explain the basic ideas of Adaline and Madaline. Describe Adaline gradient learning.
 - c) Explain traditional and NN classifiers. What are NN classifiers for fixed patterns?
- 2-a) Discuss the learning theory for basic set-up,how are the examples picked,and How is the hypothesis tested ?
 - b) Perform training steps using delta learning rule with the initial weight $w^{1} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^{T}$, c = 0.25, $\lambda = 1$ and its inputs are

	[4]				2	·.			[4]	
$x_1 =$	0	, $d_1 = -1$,	x ₂ =	- 4	, $d_2 = 1$,	$x_3 =$	4,	d ₃ = -1
	_ 2]				-2				6	

3-a) Explain the two types of learning in NNs. How to measure the performance in ANNs ?

b) The Hebbian training of a single neuron with the initial weight $w^{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{T}$, for c= 1, $\lambda = 1$, using 4 inputs :

	[2]		2		2		2
$X_{1} =$	4	X ₂ =	0	X3 =	8	, $x_4 =$	4
	_ 4]		2		6		_ 2]

Find final weights using :

i) bipolar binary f(net). ii) bipolar continuous f(net)

- 4-a) Define the concept of Backpropagation(BP), and explain BP algorithm. How to use such algorithm to be better ?
 - b) Derive an expression for tanh used as an activation function using MOS devices.

Ş

- c) Define radial basis function(RBF). What are main features?
 - Discuss that XOR can implement linearly separable form using RBF.
- 5-a) Discuss multilayer perceptron(MLP), and explain why we prefer to use sigmoid function. How setup MLP ?
 - b) Explain : Net talk Model of Reading Time Series Predication.

L

c) Explain structure diagram for neuron and activation function implementation using FPGA technology. Why use FPGA to implement ANNs ?