الله مرال

ELMANSOURA UNIVERSITY
FACULTY OF ENGINEERING
DEPARTMENT OF STRUCTURAL ENGINEERING
THEORY OF STRUCTURES (3)
FIRST TERM EXAM.

DATE: 30/12/2012
TIME ALLOWED; 3 HOURS
FULL MARK = 70 POINTS
ACADEMIC NUMBER: 8313
PROPUR. MOHAMED NAGUE ABOU EL SAAD

Any data missing may be assumed

MAXIMUM CREDIT = 70 POINTS

Question 1: 15 points

Confirm by calculation sheet that the bending moment diagram for the frame shown in Fig(1-a) is given in Fig.(1-b) using moment distribution method.

Question 2: 15 points

For the frame shown in Fig.(2), the final moment Mac=-6.66 tm, and Mca=10.67 tm due to the given loads, draw the final N.F., S.F., and B.M.D. using slope deflection method. E is constant.

Fig.(2)

Question 3: 10 points

For the truss shown in Fig.(3), if the member end forces for member cd is {4.695, 0.0, -4.695, 0.0} and the forces in the springs are 0.0t, and -0.24t at supports a and b, respectively, find the member end forces for members ad and ac in local and global systems.

All members have A= 20 cm2 and E=2000 t/cm2. ks1 = 1000 t/m and ks2 = 800 t/m

Fig.(4)

For the trussed beam shown in Fig.(4), give a complete analysis using the stiffness method. $E=2000\ t/cm2$, $I=0.005\ m4$ and the area for all truss members = 20 cm2.

Question 5: 10 points

For the beam shown in
Fig.(5). if the distance x
= 2 cm and using the
stiffness method find the
displacement vector in cases:

- i) ks1 =2000 (t/m ,ks2= 1000t/m
- ii) ks1 =2000 t/m ,ks2= 500 t/m E = 2000 t/cm2 , I = 0.001 m4.

Question 6: 12 points

- 1) Write the meaning of the mathematical model and free body diagram.
- 2) What is the difference between static and dynamic analysis of structures.
- 3)Sketch the mathetical model snd F.B.D. for damped and un-damped single degrees of freedom in free and forcedvibrations and then write equation of motion for each case.
- 4) For beam shown in Fig.(6-b), find the span L to give the same period of vibration for beam Fig.(6-a).

E = 2000 t/cm2, I = 0.004 m4.

GOOD LUCK PROF. DR. ENG. Mohamed Naguib.