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Abstract— In this work, we investigate the possibility of reducing the computational
requircmients ol (he detenninistic neurs! network function approximator, DEFAnet. The
performance coiancenent is Dused on activating smaller number of neurons according to
cerlain lovsiized distributions. The study shows (he ability of this scheme lo learn an arbitrary

function. The interaciion of lecalization with other network’s paramelers is discusscd.

L IatRoDLCTION

Neural Networks may be used as approxiinators of continuous function, as they ailow parallel
computaunn af function values They are usually trained by exaniples on the basis of local
della rules  Approximation capability ol o neural network for an arbitrary function can be
guaranteed  with a three layer  ncural network with sigmoidal function on the hidden
layer[3].[4[.{5]. Networks with Radial Basis Function (RBF “s) have been used. recently, with
suceess 1o achieve the same goal[3]. It is found thatl the boundedness candition on the
sigmaoidal  activation lunction plays an essential role in approximadion. as coatrasl to
continuity or menotenity eondition]4]. One of the main problems associated with the usc of
Neural Nelworks as a function approxtmator is the undeterminism on the topology required to
reach  petwork with capability  of vealizing required function. Another problem, is the

probability of being trapped by a local minimum, even with correct topology.

The above nwo probleas were. almost, soived by the introduction of the DEFAnet propesed
by W. [ Daunicht [1[. The only problen associated with this network is the computationally
demanding cost of compulation and  stocage thal increase exponentiaily with the number of

inpuls and «ivision count across cach of the inpuis. Thye paper is concerned wilh reducing the
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computational requirements of the DEFAnet, while, preserving its generalization capability.

The starage problet may be overwhelmed wilh hashing techniques.

This paper is organized as lollows: W [irst review the definition of 1the DEFAnct. Sccond, we
show the changes in formulation (o adopt 1he concept of localization. Then, we test the syslem

capability ol learning a test function,

1. DEFINTTION OF DEFANET |2)

The DEFAnct is a multilayer lcedforward network. Each neuron of which Forms the suin of
its inpuls weighled by the respective synaptic strengths. The neuron outputs arc monotonous

funclions ol this sum.

The first Javer nf a DEFAnel may consist of n neurons with an identity activatdon function;

serving as fan-out units. The first layer ncurons may be indexed by v =1,--- 11,

To define the conneetivity and the activation Tunction of the second laver neurons a sct of |,

paints r, with A, = 1=/ is defined for cach inputl. These points are distributed over the

respeetive inpul range. The intervals between Lwo adjacent points are thus douhlc indexed by

vand & with o =1, 0 =1, where
T i r
A =P e =i (0

In the second laver of neurons. onc neuron exists for cach interval between adjacent points
and bears the same index as the interval. Synapses (o the sccond layer cxisl only between the
¥ neuron ol the first layer and neucons indexed by v in the sceond layer. All weights are
fixed 1o 1 I'he activation (unctions of the neurons are (he concatenation of two sublracted

hyperbolic funetions and «a logavithuiie {unction

In(l+4r,.7..)

G U B In(l+ &r, )} ;
where
Y = |
. — ik +lir 3
o =L [E&__] +a, - [—23(‘:—’—] +a, 3

The hyperbolic funclions depend on the stnoothuess parameters o, . The result is hard

siwurating sipmoidal function If @, =0 and a sofl saturating one if a, = 0.
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In Ahe third tayer there are H“_ /. ncurons. They may be denoted by the vector index 4. The

synapses botween the second and the third nevron layer are sccordingly triple indexed and
fixed to the lollowing values

(3

G v

_J(ln\] LA, L) ia, =4, -1
=4 ,
i
|

1 othernwvise

Hence, the conncetivity in this synaptic layer is far from being complete. The aetivation

{unction contuns portions of the exponential function.

_ [exp{f} la, ifa=] and ¢ <lo(a,)
L) =4 - L, %
- [ ! olhenwise
where
" An) . 0 ire=1
4, = ]:!(! + dr, —U") wilh n() = ‘{l otherwise * {5

These activation funclions - stmilar Lo those of the second layer - are monotonous and their

oulputs are positive and not greater tan |1

The fourth laver of neurons contuins the output neurons. They are [uily conneeted Lo the
neurons in the third laver. These synapses and only these are plastic. The activation function

ol each oulput neuron is identity,

It is possible to approximale arhitrary eontinuous funclions by reducing tie size of the
intervals and thereby incrcasing the number of neurons in the secnnd and the third layer.
Since all plastic synapses e located in the trird layer, their weights are also trained, e.g., by

delta ruie, wilh guarantee of converzence o a global optumum.

Due to the deterministic structure of the network and the linearity of the last neuvon layer. it is
possibie Lo caleulate the svinapses weights in the last laver {rom desired function values by
means of lincar algebra [2]. In principle, it is required o form amaltrix [rom the output
function values o all in the Unrd Tayer for all teaching input vectors. Then the pseudoinverse
of this matrix 15 mulliplied to the veclor of teaehing cutput values of each output neuron
yield the synapue weighus of thal ncuron. In case of quadratic matrix the number of plastic
synapses corresponds o the numbcer of desired function values. By ealculation of the synaptic

vajues and “dnwn-loading” of the result, training may be shortened or replaced altogether.
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HIL.Ranial, BASE LOCALIZATION OF DISTRIBUTION OF THE SECOND LAYER NEURONS.

The above (ormulation suffers the need of wking into account the activation of al} neurons of
sccond laver because of the possibility of all being aclivaled. The problems associated with
this ennfiguralion is the relerencing ol all synaplic weights of the fourth Javer. The number of
weights usually grows exponentially  with the number ol inputs of (he network. Refcrencing
alf the weights not ouly makes the learning process very difficult but also limits the speed of

Lthe recall phase of the neiwork for a well-trained network,

In this werk, we devise a modificalion to the distribution of the activated neurons [nnetion to
gnarantee that (he neurons aclivaled in the second layer are small and being radially

distributed around the input points.

The distributions suggested depends on the smoothing behavior required along certain input
variabic. (i, hehavior is required o be linear along with Lhis variable, then, a count of two
cells around  ihe input variable activalion center neuron may be considered. [t the behavior is
required o he smooth, a Gaussian distribution with a center of input variable and arbitrary

adjusiable varianec 1s eonsidered.

Let the active sceond layer neurons [or output v is n,. These activated neurons may be clioscn
mnder the  assumptions that neurons with less than 1% of maximum activalion arc considered

not active. Also. let Nirst and last active neurons are denoted by s, and £, respeetively. Then,

5. = max(ﬂ, . —["—' D
2 (6

we deline

where p, =ifors, <1<n,,,-

The activation of this scheme is defiped as fonllows:

Let the smoothing value associaled with a variable v is o,. Then for input v with normally

distributed second layer outpul

- cxp(— 05x((m, , -r)!cr,)‘] for &, <k, 5/,
o 0 otherwise

: M

a"‘l,l-
3 -

where my =



Mansoury Engineering Journal, (MEJ), Vol. 23. No. 3. September 1998. E 3
Accordingly. The synapses between the second and the third ncuron layey are

i iTw, =4 ~lands, <x, <, 5

T 7 0 otherwise (8)

and the faclars aszoctuted with this input v needed to compute a, in the fourth laver is

replaced with et

where

[(: ez

i) = l ! (9}

otherwise

The sunmning points of the thivd layer peurons are replaced by multiplication points to ensure

simooth transilion on the ouipul.

The performance of the network upder these modifications is cxpected to he better. The
reason ts thal as foilows: Let &) and 5; be two inpul vectlors. I1.5) is near 52, then many of the
werghts will be comunon. This will make the responses to both inpuls are nearly the same.
This propenty is calied geperalizabon, because 1t is similar w a biological organism to

generalize [rom one learning experience to ancther [7].

However, 115 is nol near S:. then litle or pone ol the weights witl be commen. This will
imake the reeponse of S and S is independent. Consequently, it is very possible (o adjust the
response o cach of the inputs custly. The original fonmulation suffers in this case because the
adjustment lor one of  the inputs may conflict the requirements of the other. This problem 1s
solved through higher number of lcarning iterations to find a globally best weight set, This

solution in mosl cases proves to be demanding

11, Simulation and Results
Simulation has been conducted (o test the learning capability for various neighborhoods,

smoothness, md distributions. discussed in the previous sections.

The experiments 1y conducied to learn the following arbitrary simooth two-dimensional

mathemaneal lunction

(0° < x <360°

. 10
loe sy <180 (10)

F{x.3) = sin{x)-sin(y)

Weight updale of the Tourth layer, duriig all raining experiment, is according ta delta wle.

The lewrming rale is taken proporional te the maximum  number of updated weights. The
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activation function of the fourth layer is a linear funclion. The points ajong each input is
equally spaced hy 10°,
For the original DEFAnel the training points are made on the comer poinls of the hypereubes

of the inpus space. While. lor the loealized DEFAnet the training points are made on the

center panus of the hypereubes of the inputs space

The tramning is conducted for differcut learning rales and different smoothing parameters. The
smoolhing parameler determines the beliavior of the function between the training points.
This depends on  the assumplions of the shape nf the function if il is unknown. It is observed
that lhe alwlity of the nelwork lo be trained is increased with reducing the smoothness

parameter, Table [.

The lcarring ratc chapges up to 5 times without affecting the learning periormance of the
nelwork significantly,  The leaming rate that gives best final r.m.s. errors at Lraining poinls is

0 002 [or all smoothness parumeters.

Fig. 1 . 2 and 3 shows the learning behavior of the original DEFAnet with smoclhing
parameters 0.5, 0.1 and 0.0 respectively. Fig. 4, 5 and 6 shows ihe learning behavior (o

comparable maedified networks with simoothing parameters 15, 10 and 8 respeciively,

Compartng the resulta, it is observed thar: The change of the learning rates changes the
perforinance in more significant way; The r.m.s error is reduced: The r.m.s error drops in a
higher spevd The less the nunber of effective neighbuors the better the learning performance.
but this altfects the shape of lunction helween the training points. This is beside the advantage
last learninue and recalling phasc due to the reduced number of referenced synaptic weights.
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Fig | Ol DEFARet with smaothing parameter o, > 113 Flg. 2 Original DEFAnel with smoothing parameter o = 0.
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Tabie 1 Learming performance of localized DEFAnet vs. DEF Anct for cilferent parameters

and the required memory cells o relerence,

Second Smonlhness | Elfective | Referenced | Percentage of | Learning rms. error
Laver Netplibors weielis Retferenced [Late alter |00
Distribulion _ - \ _ - weigiis _epech
~ \ ' Q01 342268
‘ tr, =03 all [9*37=703 100.0% 0038183
‘__ ) l 0.005 0.04000%
Saturagon ‘ r —[ 0 ool T 0034511
siganidil ! q, =0t ' all 19#37=703 100.0% 0.002 0.029032
i 0031813
r ‘ ~ 0001 | 0032811
' all [ 19=37=703 100.0% Ll.noz—r 0.026496
] 0.005 0.030073
'ﬁ | 0.01437 0.026534 |
7 L 7e7=49 607" 0.02873 $5.021808
4.07134 0.026859
Ciaussian T (.02812 0015870
Dstriuiion ‘ 3 §*5=25 3.56% 0.05624 015231
\ 0.1406 0.018902
—
N.02812 002143
I' a =Ry ' 3 §*5=2% 3 56% 0.05624 0.008293
| . 01406 1.006330




E. 8 K. A. El-Serafi and K.Z. Moustafa

epoch

Fig. 1 M hagmal DETFAnel will smoething parwmeler o, = 0.0.

Tig 4 Loacalized DEFAnet willh o, = (5,
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Fig = Localized DEFAnet with e, = 10 Fig. 6 Locilized DEFAnet wuh o, = X

V. CONCLUSIONS

The determmnistic [unction approximation capability seems to be preserved with {ocalization

of the activiled sceond laver neurons.

The number of referenced weiphls deereases Jogarithmic with decreasing the neighborhood.
This makes the learning process much faster due to the small no of weights adjusted, also, the

reead] phase of the network is improved {or the same reasan.

The clfective ncighbors depend on the chosen smoothness assoeialed with certain inpul. The
smonthness depends on the desired behavior of the approximator, belwsen (he training points.

The proposed  modilication sl need  vigorous prool of  deteministic approximation

capahilits
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